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Abstract. Recently we studied self-adjoint extensions ( s u s )  of the Aharonov-Bohm 
fbmiltonian for B charged SchrMinger particle of spin 0. In this paper u'e discuss the relation 
between the S A U  for a spinless panicle and those for a spin-f particle in the same environment. 
We also consider SAES when a Coulomb potential is added. We funhermore clarify a few 
confusing issues which have been discussed in some recent papers regarding the relativistic 
D i m  pmicle in the Aharonov-Bohm field. 

1. htroduction 

This paper is a sequel to two earlier papers [1,2]. In [ I ]  we examined self-adjoint 
extensions (SAES) for the Aharonov-Bohm Hamiltonian, i.e. the non-relativistic Schrodinger 
Hamiltonian for a spinless charged particle in the presence of an infinitely thin thread of 
magnetic flux [3]. In [2]  we discussed the same problem but for the Dirac equation. As 
we noted in [ I ] ,  there is a vast literature on the subject of SAES of the quantum mechanical 
Hamiltonian and various rather sophisticated methods are available [4]. 

One can tell whether or not SAES for a given Hamiltonian are possible by finding the 
'deficiency index' [4]. For the Schrodinger Hamiltonians that we are going to discuss in 
the following, it can be shown that the deficiency index is (1 , l )  for a relevant partial wave 
state, which means that there is a one-parameter family of SAEs, i.e. a one-parameter family 
of different dynamics. Rather than using the deficiency index, however, we prefer to follow 
the pedestrian approach which we took in [I]. This can be summarized as follows. We 
assume an attractive square well potential of radius R and depth D acting in a relevant 
angular momentum state and solve the Schrodinger equation in the usual manner. Assume 
that there is a bound state of energy -hc2/2m, where m is the mass of the particle. We 
take the limit R + 0 so that the square well potential becomes an attractive &function 
potential. In taking the limit we fine-tune the depth D in such a way that the bound state 
energy remains the same. The ensuing &function potential is characterized by parameter K .  

The wavefunction in this limit is singular at the origin but is normalizable provided that the 
magnetic flux is within a certain range. The assumption of the existence of the bound state 
is not essential. If there is no bound state, the &function can be characterized by a quantity 
related to scattering. In [2] we applied essentially the same method to the Dirac equation. 
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The present paper was motivated by very recent papers by Hagen [5] and by Bordag and 
Voropaev [6] in which they examined the Aharonov-Bohm problem for a spin-; Schrodinger 
particle. The main purpose of the present paper is to examine the relation between the 
results of [5,6] and those of [l]. Hagen also examined the case in which, in addition to 
the magnetic flux, there is an additional Coulomb interaction acting on the particle [5]. We 
amend Hagen’s result and give a complete prescription for this case. We then go OR to 
discuss the relativistic version of the same problem in which the Schrtjdinger equation is 
replaced by the Dirac equation. There were a few rather confusing points in [2] which 
Hagen criticized [5 ] .  We will clarify them. 

In section 2 we summarize and extend the results obtained in [l]. In section 3 we 
discuss how a spin-f Schrodinger particle can be accommodated in the framework of [I]. 
In section 4 we examine the case in which a Coulomb potential is added. In section 5 we 
examine some related aspects of the Dirac version of the problem. Discussions are given 
in section 6. 

2. Spinless Schrodinger particle 

For clarity and to establish notation let us summarize relevant parts of [I]. Consider 
the Aharonov-Bohm Hamiltonian, i.e. the Schradinger Hamiltonian for a spinless charged 
particle in the presence of an infinitely thin thread of magnetic flux at the origin: 

h2 dZ 1 d 
Ho = (-s - ;z + ;) 

where r = ( x 2  + y2)”’. U is a constant related to the magnetic flux ‘.D and the (integral) 
angular momentum n through 

w=n+a a = - e 0 / ( 2 r h )  (2.2) 

where e is the charge of the particle. The Hamiltonian Ho of (2.1) is not well defined unless 
the boundary condition on the wavefunction at the origin is specified. As shown in [l], 
when IwI < 1, there is a one-parameter family of SAES of Ho. For a given value of 01, there 
are two adjacent integers for n such that / U /  < 1. Since v appears as vZ in Ho, we can 
assume that w > 0, and we do so in the following except in discussing the Dirac equation 
in section 5 .  

Let us first replace the infinitely thin magnetic flux with a uniform flux of finite radius 
R. In addition, we assume a ‘non-gauge’ potential V ( r )  which, together with the magnetic 
interaction, forms an attractive square well potential of radius R and depth D .  It is 
understood that there is no singularity at the origin and the wavefunction satisfies the usual 
boundary condition everywhere. For r < R the radial part of the Schradinger equation 
becomes 

while Hoq5 = E@ remains to apply for r > R. Assume that there is one and only one bound 
state. The $(r) for the bound state is given by the Bessel functions, J n ( h r )  for r < R and 
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KV(Kr)  for r =- R .  where ki  = 2m(D + E) /h2 ,  K’ = -2mE/h2 and suffix n of J;, stands 
for In\. The eigenvalue E can be determined from the matching condition at r = R: 

F(k0R) = G ( K R )  (2.4) 

F(koR) = -- G ( K R )  = -- (2.5) 

We now let R -+ 0, but keep K fixed at a finite value which we can choose as we 
like. Then D -+ CO and the square well potential becomes an attractive &function potential 
which is characterized by the parameter K .  If K R  << 1, we obtain 

which we will find useful later. Once the &function potential is specified, HO of (2.1) is 
completely defined. Although we assume a square-well potential for r < R, the details of 
the potential for r < R becomes unimportant in the limit of R + 0. After the limit is 
taken, the bound state wavefunction is given for the entire range of r by K V ( K r ) ,  which is 
singular at the origin but is square integrable. 

The + ( r )  for the scattering problem for r > R can be written as 

+ ( r )  = J,(kr)cosq - N,(kr)sinq (2.7) 

where k2 = 2 m E / h Z .  N&r) is singular at the origin but is locally square integrable. In 
the classic case of Aharonov and Bohm, they assumed the standard boundary condition 
which requires that the wavefunction be regular at the origin [3]. Hence q = 0 in the 
Aharonov-Bohm case. There is no bound state. 

Returning to the @ ( r )  of (2.7), we obtain for kR << I 

2” rr. -” + - 21r (F) cot q. 
r w  G ( k R )  = -- (2.8) 

Here i t  is understood that q # 0. In the limit of R + 0, this G ( k R )  can be equated with the 
G ( K R )  of (2.6) for the bound state. Note that the depth D of the potential inside the flux 
becomes infinite in this limit and hence F(k0R) becomes energy independenr. In setting the 
boundary condition G ( K R )  = F(koR) = G ( k R ) ,  F(koR) plays only an intermediary role. 
We thus obtain 

tan q ( k )  = - sin(ur)(k/K)Z”. (2.9) 

In the special case of K = 0 (with a ‘zero mode’), q can be determined by taking the limit 
of K + 0 in (2.9) with the understanding that kZ > 0. This leads to q(k)  = n/2 for any 
value of k .  In this case (2.7) becomes @(I) = - N v ( k r ) .  As we will see in the next section, 
this is the situation realized in Hagen’s model [5,7] and also in Bordag and Voropaev’s 
model with the gyromagnetic ratio g = 2 [6]. 

In the absence of the magnetic flux (a = 0, U = n = 0), for any SAE of Ho (such 
that the wavefunction is singular at the origin), there is a bound state. This is because any 
additional attractive potential in two dimensions, no matter how weak, produces a bound 
state. Therefore all possible SAES in the absence of the magnetic flux can be parametrized 



6542 

in terms of K .  In the presence of the magnetic flux, however, there are SAES such that there 
is no bound state. This is possible because the repulsive term v 2 / r 2  of the Hamiltonian 
counteracts the additional attractive non-gauge potential. I n  order to include such a situation 
it is convenient to parametrize the SAEs, for example, in  terms of 

F A  B Couiinho el al 

A - sin(ua) lim[kzY cot q(k)]. (2.10) 
k - 0  

If A > 0, there is a bound state and h is related to K by 1 = K’”. If A c 0, there is no 
bound state, In this case (2.9) is replaced by 

tan q(k) = sin(va)(k2”/lAl). (2.11) 

3. Spin-; Schrodinger partide 

In this section we discuss how the above results accommodate the spin-; Schrodinger 
particle. For a charged particle of spin-; in the presence of an infinitely thin magnetic flux, 
the Hamiltonian becomes 

H = HO + a s s ( r ) / r  (3.1) 

where s = i l  for spin ‘up’ and spin ‘down’, respectively. We are interested in the 
case as < 0. Hagen [5,7] examined this problem by assuming that the magnetic field is 
concentrated on a ring of radius R and the spin interaction term of (3. I) is replaced by 

as8(r  - R)/R.  (3.2) 

He did not assume any additional non-gauge potential within radius R. By taking the limit 
R + 0, Hagen found that the wavefunction for U < 1 (Im + 011 < 1 in his notation) can 
be irregular, i.e. singular at the origin. This wavefunction represents a zero-mode, i.e. a 
bound state with zero binding energy, and it precisely corresponds to the SAE with K = 0 
for a spinless particle as we touched upon earlier below (2.9). This zero-mode is one of the 
zero modes found by Aharonov and Casher under a more general condition [SI, Hagen said 
that there is no bound state, which is correct in the sense that the zero mode is not quite 
a bound state. For the scattering wavefunction, we find that q(k) = r / 2  in the way as we 
explained earlier below (2.9). The phrase ‘non-gauge’ potential that we have been using 
may be somewhat confusing. By this we meant in section 2 a potential other than that due 
to the magnetic field. However, the non-gauge potential that leads to the SAE with K = 0 
for the spinless particle of section 2 is equivalent to the spin interaction of (3.2) without 
any additional non-gauge potential. 

Bordag and Voropaev considered a Schrodinger particle of spin 4 with an arbitrary 
gyromagnetic ratio g [6]. They assumed no additional non-gauge interaction. If g = 2, 
their model becomes identical with Hagen’s model in the limit R + 0, it corresponds to 
the SAE of HO of (2.1) with K = 0. If g # 2, the particle has an anomalous magnetic 
moment. Bordag and Voropaev found that there is no bound state if g < 2. If g > 2, the 
energy of the bound state (with v < 1 as we are assuming) diverges in the limit R --t 0. 
They pointed out that the binding energy can be made finite in this case by lettting g + 2 
as R + 0. This situation can be accommodated within the scheme discussed in [I]  with 



Extensions of the Aharonov-Bohm Hamiltonian 6543 

K # 0. The real electron has an anomalous magnetic moment such that g is slightly greater 
than 2. In this sense the limit of g + 2 is artificial. On the other hand, if the radius R of the 
thread is finite but small, there will be a bound state which is almost singular at the origin. 
This situation can be well simulated by an appropriate SAE discussed in [I]. Bordag and 
Voropaev discussd this interesting aspect of the problem in detail. They further considered 
situations in which there are more than one bound state. 

Although unrealistic for the electron, the case of g < 2 is of some interest. Here it is 
understood that g > 0. (The situation with g < 0 can be obtained by reversing the spin 
direction.) Let us examine q of the scattering wavefunction. Let us consider the spin term 
of the surface interaction type (3.2), i.e. 

where it  is understood that as < 0, This is one of the three models that Bordag and 
Voropaev considered for the magnetic field distribution within the flux. Following them, 
we assume no additional non-gauge potential so that the potential for r < R is zero. Then 
the wavefunction for r < R is given by J,(RR), and hence 

where the last term is due to the spin interaction of (3.3). If we equate this with G(RR) ,  
remembering that 0 < v < I ,  we find 

(3.5) 

For g # 2, the left-hand side is a non-zero constant. This means that, for any k > 0, 
cot 7 + cc and q -+ 0 as R + 0. For g < 2, therefore, irregular solutions are not allowed. 

Let us add that, if we assume a non-gauge potential for r < R as we did in [I] ,  we can 
have SAES with irregular solutions. In this case the SAEs can be specified in terms of the 
parameter A(< 0) of (2.10). The boundary condition at r = R in this case reads as 

(3.6) 

For a given value of k, (3.6) defines ko as a function of R. When R -+ 0, ki 2: 2mD/hZ 
where D is a function of R. An SAE can be obtained by letting R -+ 0 but keeping the 
value of q(k) fixed. We can choose the ‘reference value’ of k as we like. If we want to 
specify the SAE in terms of A of (2.10), we choose k = +O. 

4. When a Coulomb interaction is added 

Hagen considered the case in which, in addition to the magnetic flux, there is a Coulomb 
potential acting on the particle [5]. He claimed that S A D  are possible, i.e. irregular solutions 
are admissible, only if U < $, We will show that, although there is an intriguing difference 
between the cases with U < 1 and < v < 1, SAEs are also possible for $ < U < 1. 
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The Hamiltonian that we consider is 

where f may be positive or negative. The f of [5]  corresponds to our (h2/2m)f. Let us 
examine SAES in the same manner as we did in 111. We assume an attractive non-gauge 
potential of radius R. After solving the Schrbdinger equation in the usual manner, we let 
R + 0 so that the square well potential becomes an attractive &function potential. In (4.1) 
we did not include the spin term of (3.3). This is because. as we discussed in section 3, 
such a spin interaction can be thought of as a special SAE (with K = 0) of Ho. 

Let us examine possible bound states. The wavefunction for the bound state of energy 
E = -hz~’/2m takes the following form: 

@ ( r )  = (Kr)-”e-XrU(a, b,2Kr) (4.2) 

(4.3) 

where U ( a ,  b. 2 . u )  is the Kummer function [9]. The Kummer function is a linear 
combination of regular and irregular solutions of Kummer’s equation such that it converges 
as r -+ CO. It is generally singular at the origin. 

We now calculate G ( K R )  of (2.5) but for the @(I) of (4.2). In doing so the following 
formulae are useful. For U(a. b, z )  with IzI << 1, we have 

The two regions regarding b of (4.4) and (4.5) correspond to U e i and f e U e 1, 
respectively. We can now write down G ( K R ) :  

where e ( x )  = l(0) for x > 0 ( x  e 0). If we put h = 0 in (4.6) and use 

(4.7) 

we find that (4.6) is reduced to (2.6). 
Let us first examine the case U < 4. The method that we follow is the same as that 

used for the model of HO + imm2r2 examined in [l]. Imagine that Ho has been already 
defined (before adding the Coulomb potential) and that it is characterized by parameter K,, 

as was done in section 2. The HO has a bound state with energy -h2Ki/2m. When the 
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Coulomb potential is added to this Ho. the wavefunction # ( r )  has to satisfy the following 
boundary condition: 

G o ( K ~ R )  = G ( K R )  (4.8) 

where Go(KoR) is the G ( K R )  of (2.6) with K replaced by KO. By putting (4.6) into (4.7), 
we obtain 

(4.9) 

where 5 = 0 (4.9) means K = KO as it should. When 5 # 0, (4.9) determines possible 
values of K .  In the special case of KO = 0, (4.9) leads to 

where N = 1,2,3, , , .. Since K is positive by definition, (4.10) is valid only if < 0, 
i.e. the Coulomb potential is attractive. The energy is given by E = -hZK2/2m with K 

determined by (4.10). In this case the wavefunction is given by 

#(r) = (Kr)-’e-KrLy)(Z.u) (4.11) 

where LG2”)  is the Laguerre polynomial. This # ( r )  is singular at the origin. 
If HO has no bound state, Go(KoR) of (4.8) has to be replaced by Go(kR) of (2.2) with 

k = iK. In the special case of q = 0 is of interest. In this case Go(kR) for k R  K 1 behaves 
like 

(4.12) 

Note that Go(kR) -+ U as R + 0. In order for G ( K R )  of (4.6) to satisfy the boundary 
condition, the coefficient of the term (ZKR)*” has to diverge. Thus we obtain 

(4.13) 

This determines the bound state spectrum for the Aharonov-Bohm system in the Coulomb 
potential. The wavefunctions for these states are regular at the origin, and again given by 
(4.11) but with the K of (4.13). If we put U = 0 in (4.13) we obtain the S-state energies for 
the two-dimensional hydrogen atom [IO]. Hagen obtained (4.10) and (4.13). At this point 
let us emphasize that the irregular solutions of (4.10) and the regular solutions of (4.13) 
belong to two different SAES of the Hamiltonian, i.e. two different Hamiltonians. These are 
only two of the examples of an infinite family of SAES. 

The special cases illustrated above may give the false impression that the possible 
values for K are limited. This is not so as we emphasized when we discussed the harmonic 
oscillator model in [l]. We can choose an SAE with an arbitrary value of K .  All that we 
have to do (and we can do) is to fine-tune the non-gauge potential of r c R such that 
the boundary condition (2.4) with G ( K R )  of (4.6) is satisfied. As Hagen pointed out, K 

of (4.10) diverges as U -+ 4. Recall that (4.10) is for the special case in which we start 
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with the SAE of HO with K = 0. If we start with a SAE for HO such that there is no bound 
state, i.e. h of (2.10) is negative, then the K for the ground state will remain finite when 
U -+ $. Let us repeat that the SAE of Ho with K = 0 for the spinless particle is equivalent 
to Hagen’s model with the spin interaction of (3.1). 

e U e I .  The term proportional to { of (4.6) prevents us 
from using (4.8). This does not mean that SAES are impossible, rather we have to go back 
to the boundary condition (2.4). This time the G(KR) is the one given by (4.6) with the 
&term. Equation (2.4) becomes 

FA B Coutinho er a1 

We now turn to the case of 

(4.14) 

We interpret that ko is a function of R which is defined by (4.14) for a specified value of 
K .  We take the limit R -+ 0. In doing so we keep K fixed while b R  approaches a certain 
finite (non-zero) value. Then obviously ko + 00; this requires a non-gauge potential like 
the square well potential with D -+ cu as assumed in  [ I ] .  This is how we can obtain 
the SAE for the specified value of K .  We have also checked the deficiency index of the 
Hamiltonian and found it to be (1,l). This means that, as we mentioned in section I ,  a 
one-parameter family of SAES is allowed [4]. 

Let us comment on Hagen’s calculation [5]. If we apply (4.14) to his model, F(k0R) 
takes the form 

(4.15) 

where ko = i K  and the term 01 is due to the spin interaction (3.3) with s = 1. Suppose that 
koR -+ 0 as R -+ 0. Then we can expand F(koR) as 

F(k0R) Y n - - -as. 
2(n + 1) 

(4.16) 

Note that ko is a finite constant. It is clear that (4.14) with the :-term cannot be satisfied. 
Even if we assume a non-gauge potential for t < R, as long as the potential depth remains 
finite, (4.14) cannot be satisfied. This is essentially the situation which Hagen pointed out 
for the case of 1 e U < 1. As we stated in the preceding paragraph, SAES are possible for 
4 < U < 1, but it is crucial to have a non-gauge potential such that D -+ 00 as R + 0. 

5. The Dirac particle 

Self-adjoint extensions of the Dirac Hamiltonian in the presence of an infinitely thin thread 
of magnetic flux has been the subject of several papers in recent years [2,5,6,11]. Unlike 
the Schrodinger case which we have discussed in the preceding sections, SAES of the Dirac 
Hamiltonian are possible only for -1 < U < 0. For U 0, at least one of the components 
of the Dirac wavefunction becomes unnormalizable. A general framework of SAES was 
described, for example, by Gerben [ I  I ] .  In [2] SA= were discussed in the same manner 
as that of [I]  by assuming a non-gauge potential within the flux r < R .  The case in which 
a Coulomb potential is added was also discussed in [Z]. Hagen [5 ]  has recently criticized 
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[ 2 ] .  His main objection is that the procedure described in [ Z ]  is unreliable because the 
Klein paradox may appear. In this section, however, we show that the difficulty that Hagen 
suggested does not actually occur. We also rectify some confusing points in the work 
presented in [ 2 ] .  

The Dirac equation in standard notation reads 

(a. II + j?m + V)Y = EV n =  p - eA. (5.1) 

Unlike in [ 2 , 6 , 7 ] ,  we take (5.1) as the Dirac equation in three space dimensions with the 
understanding that V is independent of z and p 1  = 0. The Dirac matrices az, ay and f l  are 
4 x 4. We write the four component spinor V as 

where each of @ and x has two components. The potential V(r) where r = ( x 2  + y2)1/2 
is the non-gauge potential which we may assume within the magnetic flux, i.e. for r c R. 
This is essentially what was denoted by U R  in [Z]. The potential V(r) of (5.1) is the zeroth 
component of a Lorentz vector. We use units such that c = h = 1 in this section. 

Outside the flux, r z R, we assume that V(r) = 0. Then (5.1) can be reduced to 

(112 + m2 - E * ) @  = [(p - eA)* + m2 - E’]@ = 0 r > R. (5.3) 

This can be further reduced to 

__ - -- 
dr2 r d r  

for r > R (5.4) 

where k2 = E’ - m2. When discussing a bound state we replace k2 of (5.4) with -K’ 
such that K~ = m2 - E*, Equation (5.4) can be solved exactly in the same way as the 
Schrodinger equation. The lower component x of Y is related to @ by 

x = - ( ” - ! ! ) @  --I r z R .  
m + E  ar (5.5) 

Since U appears in (5.5) we have to distinguish positive and negative U. The boundary 
condition at r = R can be dealt with in terms of @ and x ,  or equivalently in terms of the 
logarithmic derivative of @, exactly as in the Schrodinger case. 

Suppose there is a bound state. Then @ can be taken as 

@ = KdKr)  (5.6) 

where we have suppressed the factor which specifies the (up or down) spin state. x is given 
by 

For K r  << I ,  we  find, apart from constant factors, 4 - r-’”l and x - r-I”+’l. In order for 
both of @ and x to be square integrable around the origin, we require that -1  < U < 0. 
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For a given value of a. there is only one integer n such that -1 e U < 0 is satisfied. The 
restriction - I  e U < 0 is assumed in this section unless otherwise stated. 

The restriction - - I  e v e 0 is well known of course. The reason we mention this 
is that we want to point out a very interesting aspect of Hagen’s model calculation in this 
regard [SI. As Hagen emphasized. he does not require that the wavefunction is normalizable 
around the origin. By solving the Pauli equation for 4 with the spin interaction of (3.2) and 
letting r -+ 0, he finds that [U]  e 1 which guarantees that 4 is square integrable around the 
origin. We have confirmed that this remarkable feature appears also for the spin interactions 
considered by Bordag and Voropaev [6]. We suspect that this holds in the limit of R -+ 0 
for any arbitrary distribution of the magnetic field within the flux. 

Inside the flux, if we assume V(r) for r < R, solving the Dirac equation becomes a 
little more complicated. Equation (5.1) can be handled as coupled equations for @ and x 
as was done in [Z]. The boundary condition at r = R is that 4 and x are both continuous. 
Alternatively, we can reduce (5.1) to an equation for the upper component, 

F A  B Coutinko et a1 

(5.8) - ( c .  T ) ( u .  lT) + m 2  - (E - V2 4 = 0 1 iV‘ 1 
E + m - V r  

where 1’‘ = dV(r)/dr. II’ becomes 

n2 = (p - eA)’ - eo,B B = (V x A),. (5.9) 

The spin term with (cs ((3.1) or (3.2)) derives from the term with B of (5.9). We are 
interested in the situation that corresponds to as e 0. If V(r) is a square well potential of 
radius R, V’ is of the form of S(r - R) .  This and the spin term have to be carefully taken 
care of in matching the 4 for r < R and that for r > R. We do not delve into this aspect of 
the problem because the SAD that we obtain after letting R -+ 0 are, after all, insensitive 
to the details of the wavefunction for r e R. Let us rather focus on the question raised by 
Hagen regarding the Klein paradox. 

For the discussion in the following it is sufficient to know that, if the potential for r < R 
(the non-gauge potential plus the effective potential due to the magnetic field) is attractive 
and is a constant -D < 0, then 4 for r < R is of the form of 

(5.10) 

Here we assume a square well potential for simplicity but the specific form of the potential 
is not essential. We know that there is a bound state with E = m or K = 0 when D = 0; 
then b = 0 [8]. Imagine that D is increased starting with D = 0. Then the binding energy 
of the bound state increases, i.e. K > 0 increases, and so does k i .  

Now suppose there is one and only one bound state with a certain value of K. It is 
understood that the bound state energy E is positive. This situation can be set up with an 
appropriate choice of the values of R and D. Then k i  > 0. Starting with this situation, 
decrease R and increase D in such a way that K is kept fixed. Then k i  will increase and, in 
the limit R -+ 0, we find that D -+ w and # + W. The value of k i  does not oscillate in 
this process. This is how we can obtain an sAE of the Dirac Hamiltonian. In this limiting 
process no new bound states appear. Even when there are bound states in the beginning 
other than the one that we use for parametrizing the SAE, they all become unbound in the 
limit r -+ 0. Generally, when there are a few bound states in a square well potential and 
when the radius R is reduced, the level distance increases. This is basically why no new 

2 4 = J,,(kor) r < R k i  = (E + D)’ - m . 



Extensions of the Aharonov-Bohm Hamiltonian 6549 

bound states are added i n  the limiting process of R + 0. We have confirmed this by 
numerical experiments. 

In [2], instead of the attractive non-gauge potential we assumed above, a repulsive 
non-gauge potential was assumed. That was unfortunate in  the sense that the following 
unnecessary complication can occur. In order to have a positive energy bound state with 
a repulsive potential, its depth D has to be much greater than m. For example in order to 
have a bound state with energy E slightly less than m, we have to assume D much larger 
than 2m. In this case there can be more bound states whose energies are lower. Some of 
these energies may be negative. Nevertheless there is no difficulty in defining a SAE in the 
way we described in the preceding paragraph. In the limiting process R + 0 by keeping 
the E or K fixed for the bound state just below m, the k i  remains always positive. This 
is because we start with D > 2m. There is no oscillation of the sign of k i  which Hagen 
discussed. We have confirmed this also by numerical experiments. Let us add that, in [2] 
a repulsive non-gauge potential was thought of as a device for shielding the magnetic flux 
from the particle wavefunction. This idea is wrong. In fact we can have a bound state by 
a (very strong) repulsive potential as discussed above. 

Let us briefly discuss the case in which a Coulomb potential c / r  is added. As shown 
in [2], q5 behaves like rY-’/’ around the origin where y is defined by 

It is understood that 6’ < $. Since we are interested in irregular solutions, we choose the 
negative one from the double sign of (5.1 1). The square integrability of q5 around the origin 
requires that y z i, which leads to v ( u  + 1) < e*, or 

(5.12) - I  - ( a  +py < v < 4 - ( i + t  2 ) L/Z . 
2 

The mechanism behind this is simple. The Dirac equation with the Coulomb interaction 
( / r  can be written into a Schrodinger-like equation; see e.g. [IZ]. In that equation a term 
-c2/r2 appears. When this term is combined with the centrifugal potential term we find 
that U + f is effectively replaced by y ,  The wavefunction q5 takes the same form as that 
for the corresponding non-relativistic case except that v + 4 is replaced by y .  As discussed 
in [2] SAES of the Dirac Hamiltonian are possible when (5.12) is satisfied. If U satisfies 

there are two integers for n such that SAES are possible. 

6. Discussion 

We have examined the relation between the SAEs of the Hamiltonian for a spinless particle 
in the Aharonov-Bohm field and the models considered by Hagen [5,7] and by Bordag and 
Voropaev [6] for a spin-f Schrodinger particle in the same environment. We also examined 
the case in which a Coulomb potential is added. We then proceeded to the Dirac particle 
and clarified a few confusing points of some recent papers [2,5]. 

The model of [5,7] and that of [6] are clear in their physical meaning. Mathematically, 
however, these models can be regarded as special cases of an infinite variety of possible 
SAEs. In this paper we have studied SAES out of mathematical curiosity rather than from 
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any specific physical motivation. However, SAES can, in principle, be something more than 
a mathematical artifact. In [I] we discussed some situations, although unrelated to the 
Aharonov-Bohm problem, in which SAES represent good approximations to real physical 
systems. When the gyromagnetic ratio g of a spin-; particle is greater than 2, a situation 
like an SAE will be realized as discussed by Bordag and Voropaev 161. 

For the Dirac particle we considered only the Lorentz vector type for the non-gauge 
potential. Non-gauge potentials of Lorentz scalar type are also interesting. For example, a 
model such that the Dirac wavefunction is shielded from the flux could be constructed by 
means of a scalar-type interaction. In such a model, h of (2.10) can be used for parametrizing 
the extent of the shielding. In order to have complete suppression of the wavefunction on 
the surface of the magnetic flux, the scalar potential has to be infinitely strong and its radius 
larger than that of the flux. In [21 a repulsive non-gauge interaction of the Lorentz vector 
type was conceived as a means of suppressing the Dirac wavefunction in the magnetic flux 
region. That idea fails as we pointed out in section 5. 
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